Chapter 2 AC to DC CONVERSION (RECTIFIER)

- Single-phase, half wave rectifier
 - Uncontrolled: R load, R-L load, R-C load
 - Controlled
 - Free wheeling diode
- Single-phase, full wave rectifier
 - Uncontrolled: R load, R-L load,
 - Controlled
 - Continuous and discontinuous current mode
- Three-phase rectifier
 - uncontrolled
 - controlled

Rectifiers

• **DEFINITION**: Converting AC (from mains or other AC source) to DC power by using power diodes or by controlling the firing angles of thyristors/controllable switches.

Basic block diagram

- Input can be single or multi-phase (e.g. 3-phase).
- Output can be made fixed or variable
- **Applications**: DC welder, DC motor drive, Battery charger,DC power supply, HVDC

Single-phase, half-wave, R-load

Output voltage (DC or average),

$$V_o = V_{avg} = \frac{1}{2\pi} \int_0^{\pi} V_m \sin(\omega t) d\omega t = \frac{V_m}{\pi} = 0.318 V_m$$

Output voltage (rms),

$$V_o,_{RMS} = \sqrt{\frac{1}{2\pi} \int_0^{\pi} (V_m \sin(\omega t) d\omega t)^2} = \frac{V_m}{2} = 0.5V_m$$

Half-wave with R-L load

$$KVL: v_s = v_R + v_L$$

$$V_m \sin(\omega t) = i(\omega t)R + L\frac{di(\omega t)}{d\omega t}$$

First order differential eqn. Solution:

$$i(\omega t) = i_f(\omega t) + i_n(\omega t)$$

 i_f : forced response; i_n natural response,

From diagram, forced response is:

$$i_f(\omega t) = \left(\frac{V_m}{Z}\right) \cdot \sin(\omega t - \theta)$$

where:

$$Z = \sqrt{R^2 + (\omega L)^2}$$

$$\theta = \tan^{-1} \left(\frac{\omega L}{R} \right)$$

R-L load

Natural response is when source = 0,

$$i(\omega t)R + L\frac{di(\omega t)}{d\omega t} = 0$$

which results in:

$$i_n(\omega t) = Ae^{-\omega t/\omega \tau}$$
; $\tau = L/R$

Hence

$$i(\omega t) = i_f(\omega t) + i_n(\omega t) = \left(\frac{V_m}{Z}\right) \cdot \sin(\omega t - \theta) + Ae^{-\omega t/\omega \tau}$$

A can be solved by realising inductor current is zero before the diode starts conducting, i.e:

$$i(0) = \left(\frac{V_m}{Z}\right) \cdot \sin(0 - \theta) + Ae^{-0/\omega \tau}$$

$$\Rightarrow A = \left(\frac{V_m}{Z}\right) \cdot \sin(-\theta) = \left(\frac{V_m}{Z}\right) \cdot \sin(\theta)$$

Therefore the current is given as,

$$i(\omega t) = \left(\frac{V_m}{Z}\right) \cdot \left[\sin(\omega t - \theta) + \sin(\theta)e^{-\omega t/\omega \tau}\right]$$

R-L waveform

Note:

 v_L is negative because the current is decreasing, i.e.:

$$v_L = L \frac{di}{dt}$$

Power Electronics and Drives (Version 3-2003), Dr. Zainal Salam, 2003

Extinction angle

Note that the diode remains in forward biased longer than π radians (although the source is negative during that duration) The point when current reaches zero is whendiode turns OFF. This point is known as the extinction angle, β .

$$i(\beta) = \left(\frac{V_m}{Z}\right) \cdot \left[\sin(\beta - \theta) + \sin(\theta)e^{-\beta/\omega\tau}\right] = 0$$

which reduces to:

$$\sin(\beta - \theta) + \sin(\theta)e^{-\beta/\omega\tau} = 0$$

 β can only be solved numerically.

Therefore, the diode conducts between 0 and β

To summarise the rectfier with R - L load,

$$i(\omega t) = \begin{cases} \left(\frac{V_m}{Z}\right) \cdot \left[\sin(\omega t - \theta) + \sin(\theta)e^{-\omega t/\omega \tau}\right] \\ \text{for } 0 \le \omega t \le \beta \\ 0 \\ \text{otherwise} \end{cases}$$

RMS current, Power

The average (DC) current is:

$$I_o = \frac{1}{2\pi} \int_0^{2\pi} i(\omega t) d\omega t = \frac{1}{2\pi} \int_0^{\beta} i(\omega t) d\omega t$$

The RMS current is:

$$I_{RMS} = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} i^{2}(\omega t) d\omega t} = \sqrt{\frac{1}{2\pi} \int_{0}^{\beta} i^{2}(\omega t) d\omega t}$$

POWER CALCULATION

Power absorbed by the load is:

$$P_{o} = (I_{RMS})^{2} \cdot R$$

Power Factor is computed from definition:

$$pf = \frac{P}{S}$$

where *P* is the real power supplied by the source, which equal to the power absorbed by the load. *S* is the apparent power supplied by the

source, i.e

$$S = (V_{s,RMS})(I_{RMS})$$

$$\Rightarrow pf = \frac{P}{(V_{s,RMS})(I_{RMS})}$$

Half wave rectifier, R-C Load

$$v_{o} = \begin{cases} V_{m} \sin(\omega t) & \text{when diode is ON} \\ V_{\theta} e^{-(\omega t - \theta)/\omega RC} & \text{when diode is OFF} \end{cases}$$

$$v_{\theta} = V_{m} \sin \theta$$

Operation

- Let C initially uncharged. Circuit is energised at $\omega t = 0$
- Diode becomes forward biased as the source become positive
- When diode is ON the output is the same as source voltage. C charges until V_m
- After $\omega t = \pi/2$, C discharges into load (R).
- The source becomes less than the output voltage
- Diode reverse biased; isolating the load from source.
- The output voltage decays exponentially.

Estimation of θ

The slope of the functions are:

$$\frac{d(V_m \sin \omega t)}{d(\omega t)} = V_m \cos \omega t$$

and

$$\frac{d\left(V_{m}\sin\theta\cdot e^{-(\omega t-\theta)/\omega RC}\right)}{d(\omega t)}$$

$$= V_m \sin \theta \cdot \left(-\frac{1}{\omega RC} \right) \cdot e^{-(\omega t - \theta)/\omega RC}$$

At $\omega t = \theta$, the slopes are equal,

$$V_m \cos \theta = V_m \sin \theta \cdot \left(-\frac{1}{\omega RC}\right) \cdot e^{-(\theta - \theta)/\omega RC}$$

$$\Rightarrow \frac{V_m \cos \theta}{V_m \sin \theta} = -\frac{1}{\omega RC}$$

$$\frac{1}{\tan \theta} = \frac{1}{-\omega RC}$$

$$\theta = \tan^{-1}(-\omega RC) = -\tan^{-1}(\omega RC) + \pi$$

For practical circuits, ωRC is large, then:

$$\theta = -\tan(\infty) + \pi = -\frac{\pi}{2} + \pi = \frac{\pi}{2}$$

 θ is very close to the peak of the sine wave. Therefore and $V_m \sin \theta = V_m$

Estimation of α

At
$$\omega t = 2\pi + \alpha$$
,

$$V_m \sin(2\pi + \alpha) = (V_m \sin \theta) e^{-(2\pi + \alpha - \theta)/\omega RC}$$

or

$$\sin(\alpha - (\sin\theta)e^{-(2\pi + \alpha - \theta)/\omega RC} = 0$$

This equation must be solved numerically for α

Ripple Voltage

Max output voltage is V_{max} .

Min output voltage occurs at $\omega t = 2\pi + \alpha$

$$\Delta V_o = V_{\text{max}} - V_{\text{min}}$$

$$= V_m - V_m \sin(2\pi + \alpha) = V_m - V_m \sin \alpha$$

If $V_{\theta} = V_m$ and $\theta = \pi/2$, and C is large such that

DC output voltage is constant, then $\alpha \approx \pi/2$.

The output voltage evaluated at $\omega t = 2\pi + \alpha$ is:

$$v_{o}(2\pi + \alpha) = V_{m}e^{-\left(\frac{2\pi + \pi/2 - \pi/2}{\omega RC}\right)} = V_{m}e^{-\left(\frac{2\pi}{\omega RC}\right)}$$

The ripple voltage is approximated as:

$$\Delta V_{o} \approx V_{m} - V_{m}e^{-\left(\frac{2\pi}{\omega RC}\right)} = V_{m}\left(1 - e^{-\left(\frac{2\pi}{\omega RC}\right)}\right)$$

Using Series expansoin: $e^{-\left(\frac{2\pi}{\omega RC}\right)} = 1 - \frac{2\pi}{\omega RC}$

$$\Rightarrow \Delta V_o = V_m \left(\frac{2\pi}{\omega RC} \right) = \frac{V_m}{fRC}$$

Capacitor Current

The current in the capacitor can be expressed as:

$$i_c(t) = C \frac{dv_o(t)}{d(t)}$$

In terms of ωt ,:

$$i_c(\omega t) = \omega C \frac{dv_o(\omega t)}{d(\omega t)}$$

But

$$v_o(\omega t) = \begin{cases} V_m \sin(\omega t) & \text{when diode is ON} \\ V_m \sin\theta \cdot e^{-(\omega t - \theta)/\omega RC} & \text{when diode is OFF} \end{cases}$$

Then, substituting
$$v_o(\omega t)$$
,
$$\frac{\omega CV_m \cos(\omega t)}{\text{when diode is ON,}}$$
i.e $(2\pi + \alpha) \le \omega t \le (2\pi + \theta)$

$$\frac{V_m \sin \theta}{R} \cdot e^{-(\omega t - \theta)/\omega RC}$$
when diode is OFF,
i.e $(\theta) \le \omega t \le (2\pi + \alpha)$

Power Electronics and Drives (Version 3-2003), Dr. Zainal Salam, 2003

Peak Diode Current

Note that:

$$i_S = i_D = i_R + i_C$$

The peak diode current occurs at $(2\pi + \alpha)$. Hence.

$$I_{c,peak} = \omega C V_m \cos(2\pi + \alpha) = \omega C V_m \cos \alpha$$

Resistor current at $(2\pi + \alpha)$ can be obtained:

•

$$i_R(2\pi + \alpha) = \frac{V_m \sin(2\pi + \alpha)}{R} = \frac{V_m \sin \alpha}{R}$$

The diode peak current is:

$$i_{D,peak} = \omega C V_m \cos \alpha + \frac{V_m \sin \alpha}{R}$$

Example

A half-wave rectifier has a 120V rms source at 60Hz. The load is =500 Ohm, C=100uF. Assume α and θ are calculated as 48 and 93 degrees respectively. Determine (a) Expression for output voltage (b) peak-to peak ripple (c) capacitor current (d) peak diode current.

$$V_m = 120\sqrt{2} = 169.7V;$$

$$\theta = 93^{\circ} = 1.62 rad;$$

$$\alpha = 48^{\circ} = 0.843 rad$$

$$V_m \sin \theta = 169.7 \sin(1.62 rad) = 169.5 V;$$

(a) Output voltage:

$$v_o(\omega t) = \begin{cases} V_m \sin(\omega t) = 169.7 \sin(\omega t) & (ON) \\ V_m \sin\theta \cdot e^{-(\omega t - \theta)/\omega RC} & (OFF) \end{cases}$$

$$= \begin{cases} 169.7 \sin(\omega t) & \text{(ON)} \\ 169.5 e^{-(\omega t - 1.62)/(18.85)} & \text{(OFF)} \end{cases}$$

Power Electronics and Drives (Version 3-2003), Dr. Zainal Salam, 2003

Example (cont')

(b)Ripple:

Using: $\Delta V_o = V_{\text{max}} - V_{\text{min}}$

$$\Delta V_o = V_m - V_m \sin(2\pi + \alpha) = V_m - V_m \sin \alpha = 43V$$

Using Approximation:

$$\Delta V_o = V_m \left(\frac{2\pi}{\omega RC} \right) = \frac{V_m}{fRC} = \frac{169.7}{60 \times 500 \times 100u} = 56.7V$$

(c) Capacitor current:

$$i_{c}(\omega t) = \begin{cases} \omega C V_{m} \cos(\omega t) & (ON) \\ -\frac{V_{m} \sin(\theta)}{R} \cdot e^{-(\omega t - \theta)/(\omega RC)} & (OFF) \end{cases}$$

$$= \begin{cases} 6.4\cos(\omega t) \text{ A} & \text{(ON)} \\ -0.339 \cdot e^{-(\omega t - 1.62)/(18.85)} & \text{A} & \text{(OFF)} \end{cases}$$

(d) Peak diode current:

$$i_{D,peak} = \omega C V_m \cos \alpha + \frac{V_m \sin \alpha}{R}$$

$$= (2 \times \pi \times 60)(100u)169.7 \cos(0.843rad) + \frac{169.7 \sin(1.62rad)}{500}$$

$$= (4.26 + 0.34) = 4.50A$$

Controlled half-wave

Average voltage:

$$V_o = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_m \sin(\omega t) d\omega t = \frac{V_m}{2\pi} [1 + \cos \alpha]$$

RMS voltage

$$V_{o,RMS} = \sqrt{\frac{1}{2\pi}} \int_{\alpha}^{\pi} [V_m \sin(\omega t)] d\omega t$$

$$= \sqrt{\frac{V_m^2}{4\pi}} \int_{\alpha}^{\pi} [1 - \cos(2\omega t)] d\omega t = \frac{V_m}{2} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin(2\alpha)}{2\pi}}$$

Controlled h/w, R-L load

$$i(\omega t) = i_f(\omega t) + i_n(\omega t) = \left(\frac{V_m}{Z}\right) \cdot \sin(\omega t - \theta) + Ae^{\frac{-\omega t}{\omega \tau}}$$

Initial condition : $i(\alpha) = 0$,

$$i(\alpha) = 0 = \left(\frac{V_m}{Z}\right) \cdot \sin(\alpha - \theta) + Ae^{\frac{-\alpha}{\omega\tau}}$$

$$\Rightarrow A = -\left[\left(\frac{V_m}{Z}\right) \cdot \sin(\alpha - \theta)\right] e^{\frac{-\alpha}{\omega \tau}}$$

Controlled R-L load

Substituting for *A* and simplifying,

$$i(\omega t) = \begin{cases} \left(\frac{V_m}{Z}\right) \cdot \left[\sin(\omega t - \theta) - \sin(\alpha - \theta)e^{\frac{-(\alpha - \omega t)}{\omega \tau}}\right] & \text{for } \alpha \leq \omega t \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Extinction angle β must be solved numerically

$$i(\beta) = 0 = \left(\frac{V_m}{Z}\right) \left[\sin(\beta - \theta) - \sin(\beta - \theta)e^{\frac{-(\alpha - \beta)}{\omega \tau}}\right]$$

Angle $\gamma = (\beta - \theta)$ is called the conduction angel.

Average voltage:

$$V_o = \frac{1}{2\pi} \int_{\alpha}^{\beta} V_m \sin(\omega t) d\omega t = \frac{V_m}{2\pi} [\cos \alpha - \cos \beta]$$

Average current:

$$I_o = \frac{1}{2\pi} \int_{\alpha}^{\beta} i(\omega t) d\omega$$

RMS current:

$$I_{RMS} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\beta} i^2(\omega t) d\omega}$$

The power absorbed by the load:

$$P_o = I_{RMS}^2 \cdot R$$

Examples

- 1. A half wave rectifier has a source of 120V RMS at 60Hz. R=20 ohm, L=0.04H, and the delay angle is 45 degrees. Determine: (a) the expression for *i*(ω*t*), (b) average current, (c) the power absorbed by the load.
- 2. Design a circuit to produce an average voltage of 40V across a 100 ohm load from a 120V RMS, 60Hz supply. Determine the power factor absorbed by the resistance.

Freewheeling diode (FWD)

- Note that for single-phase, half wave rectifier with R-L load, the load (output) current is NOT continuos.
- A FWD (sometimes known as commutation diode) can be placed as shown below to make it continuos

 D_2 is on, D_1 is off

Operation of FWD

- Note that both D₁ and D₂ cannot be turned on at the same time.
- For a positive cycle voltage source,
 - D_1 is on, D_2 is off
 - The equivalent circuit is shown in Figure (b)
 - The voltage across the R-L load is the same as the source voltage.
- For a negative cycle voltage source,
 - D_1 is off, D_2 is on
 - The equivalent circuit is shown in Figure (c)
 - The voltage across the R-L load is zero.
 - However, the inductor contains energy from positive cycle. The load current still circulates through the R-L path.
 - But in contrast with the normal half wave rectifier, the circuit in Figure (c) does not consist of supply voltage in its loop.
 - Hence the "negative part" of v_o as shown in the normal half-wave disappear.

FWD- Continuous load current

- The inclusion of FWD results in continuos load current, as shown below.
- Note also the output voltage has no negative part.

Full wave rectifier

Center-tapped
 (CT) rectifier
 requires
 center-tap
 transformer.
 Full Bridge
 (FB) does not.

- CT: 2 diodes
- FB: 4 diodes.
 Hence, CT
 experienced
 only one diode
 volt-drop per
 half-cycle

For both circuits,

$$v_o = \begin{cases} V_m \sin \omega t & 0 \le \omega t \le \pi \\ -V_m \sin \omega t & \pi \le \omega t \le 2\pi \end{cases}$$

Average (DC) voltage:

$$V_o = \frac{1}{\pi} \int_0^{\pi} V_m \sin(\omega t) d\omega t = \frac{2V_m}{\pi} = 0.637 V_m$$

- Conduction losses for CT is half.
- Diodes ratings for CT is twice than FB

Bridge waveforms

Power Electronics and Drives (Version 3-2003), Dr. Zainal Salam, 2003

Center-tapped waveforms

Power Electronics and Drives (Version 3-2003), Dr. Zainal Salam, 2003

Full wave bridge, R-L load

Approximation with large L

Using Fourier Series,

$$v_o(\omega t) = V_o + \sum_{n=2,4...}^{\infty} V_n \cos(n\omega t + \pi)$$

where the DC term

$$V_o = \frac{2V_m}{\pi}$$

and the harmonics terms

$$V_n = \frac{2V_m}{\pi} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$$

The DC curent

$$I_o = \frac{V_o}{R}$$

The harmonic currents:

$$I_n = \frac{V_n}{Z_n} = \frac{V_n}{|R + jn\omega L|}$$

As n increases, V_n harmonic decreases.

Thus I_n decreases rapidly very increasing n.

If ωL is large enough, it is possible to drop all the harmonic terms, i.e.:

$$i(\omega t) \approx I_o = \frac{V_o}{R} = \frac{2V_m}{\pi R}, \quad \text{for } \omega L >> R,$$

R-L load approximation

Approximate current

$$\begin{split} I_o = & \frac{V_o}{R} = \frac{2V_m}{\pi R}, \\ I_{RMS} = & \sqrt{{I_o}^2 + \sum \left(I_{n,RMS}^2\right)} = I_o \end{split}$$

Power delivered to the load:

$$P_o = I_{RMS}^2 R$$

Examples

Given a bridge rectifier has an AC source V_m =100V at 50Hz, and R-L load with R=100ohm, L=10mH

- a) determine the average current in the load
- b) determine the first two higher order harmonics of the load current
- c) determine the power absorbed by the load

Controlled full wave, R load

Average (DC) voltage:

$$V_o = \frac{1}{\pi} \int_{\alpha}^{\pi} V_m \sin(\omega t) d\omega t = \frac{V_m}{\pi} [1 + \cos \alpha]$$

RMS Voltage

$$V_{o,RMS} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} [V_m \sin(\omega t)]^2 d\omega t}$$
$$= V_m \sqrt{\frac{1}{2} - \frac{\alpha}{2\pi} + \frac{\sin(2\alpha)}{4\pi}}$$

The power absorbed by the R load is:

$$P_o = \frac{V_{RMS}^2}{R}$$

Controlled, R-L_load

Power Electronics and Drives (Version 3-2003), Dr. Zainal Salam, 2003

Discontinuous mode

Analysis similar to controlled half wave with R - L load:

$$i(\omega t) = \left(\frac{V_m}{Z}\right) \cdot \left[\sin(\omega t - \theta) - \sin(\alpha - \theta)e^{-(\omega t - \alpha)/\omega \tau}\right]$$

for
$$\alpha \le \omega t \le \beta$$

 $Z = \sqrt{R^2 + (\omega L)^2}$
and $\theta = \tan^{-1} \left(\frac{\omega L}{R}\right)$; $\tau = \frac{L}{R}$

For discontinous mode, need to ensure:

$$\beta < (\alpha + \pi)$$

Note that β is the extinction angle and must be solved numerically with condition:

$$i_o(\beta) = 0$$

The boundary between continous and discontinous current mode is when β in the output current expression is $(\pi + \alpha)$.

For continous operation current at $\omega t = (\pi + \alpha)$ must be greater than zero.

Continuous mode

$$i(\pi + \alpha) \ge 0$$

 $\sin(\pi + \alpha - \theta) - \sin(\pi + \alpha - \theta)e^{-(\pi + \alpha - \alpha)/\omega \tau} \ge 0$

Using Trigonometry identity:

$$\sin(\pi + \alpha - \theta) = \sin(\theta - \alpha),$$

$$\sin(\theta - \alpha) \left[1 - e^{-(\pi/\omega \tau)} \right] \ge 0,$$

Solving for α

$$\alpha = \tan^{-1} \left(\frac{\omega L}{R} \right)$$

Thus for continuous current mode,

$$\alpha \leq \tan^{-1} \left(\frac{\omega L}{R} \right)$$

Average (DC) output voltage is given as:

$$V_o = \frac{1}{\pi} \int_{\alpha}^{\alpha + \pi} V_m \sin(\omega t) d\omega t = \frac{2V_m}{\pi} \cos \alpha$$

Single-phase diode groups

- In the top group (D_1, D_3) , the cathodes (-) of the two diodes are at a common potential. Therefore, the diode with its anode (+) at the highest potential will conduct (carry) i_d .
- For example, when v_s is (+), D_1 conducts i_d and D_3 reverses (by taking loop around v_s , D_1 and D_3). When v_s is (-), D_3 conducts, D_1 reverses.
- In the bottom group, the anodes of the two diodes are at common potential. Therefore the diode with its cathode at the lowest potential conducts i_d .
- For example, when v_s (+), D_2 carry i_d . D_4 reverses. When v_s is (-), D_4 carry i_d . D_2 reverses.

Three-phase rectifiers

Drives (Version 3-2003), Dr. Zainal Salam, 2003

37

Three-phase waveforms

- Top group: diode with its anode at the highest potential will conduct. The other two will be reversed.
- Bottom group: diode with the its cathode at the lowest potential will conduct. The other two will be reversed.
- For example, if D_1 (of the top group) conducts, v_p is connected to v_{an} . If D_6 (of the bottom group) conducts, v_n connects to v_{bn} . All other diodes are off.
- The resulting output waveform is given as: $v_o = v_p v_n$
- For peak of the output voltage is equal to the peak of the line to line voltage v_{ab} .

Three-phase, average voltage

Considers only one of the six segments. Obtain its average over 60 degrees or $\pi/3$ radians.

Average voltage:

$$V_{o} = \frac{1 - \frac{2\pi/3}{\pi/3} \int_{\pi/3}^{2\pi/3} V_{m,L-L} \sin(\omega t) d\omega t}$$

$$= \frac{3V_{m,L-L}}{\pi} [\cos(\omega t)]_{\pi/3}^{2\pi/3}$$

$$= \frac{3V_{m,L-L}}{\pi} = 0.955V_{m,L-L}$$

Note that the output DC voltage component of a three - phase rectifier is much higher than of a single - phase.

Controlled, three-phase

Output voltage of controlled three phase rectifier

From the previous Figure, let α be the delay angle of the SCR.

Average voltage can be computed as:

$$V_{o} = \frac{1}{\pi/3} \int_{\pi/3+\alpha}^{2\pi/3+\alpha} V_{m,L-L} \sin(\omega t) d\omega t$$
$$= \left(\frac{3V_{m,L-L}}{\pi}\right) \cdot \cos \alpha$$

• EXAMPLE: A three-phase controlled rectifier has an input voltage of 415V RMS at 50Hz. The load R=10 ohm. Determine the delay angle required to produce current of 50A.